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We present a Bayesian, Markov-chain Monte Carlo method for fine-scale linkage-disequilibrium gene mapping
using high-density marker maps. The method explicitly models the genealogy underlying a sample of case chro-
mosomes in the vicinity of a putative disease locus, in contrast with the assumption of a star-shaped tree made by
many existing multipoint methods. Within this modeling framework, we can allow for missing marker information
and for uncertainty about the true underlying genealogy and the makeup of ancestral marker haplotypes. A crucial
advantage of our method is the incorporation of the shattered coalescent model for genealogies, allowing for
multiple founding mutations at the disease locus and for sporadic cases of disease. Output from the method includes
approximate posterior distributions of the location of the disease locus and population-marker haplotype propor-
tions. In addition, output from the algorithm is used to construct a cladogram to represent genetic heterogeneity
at the disease locus, highlighting clusters of case chromosomes sharing the same mutation. We present detailed
simulations to provide evidence of improvements over existing methodology. Furthermore, inferences about the
location of the disease locus are shown to remain robust to modeling assumptions.

Introduction

Fine-scale linkage disequilibrium (LD) mapping using
high-density marker maps is widely recognized as having
the potential to play a major role in the identification
of genes involved in complex diseases. In particular, a
detailed single-nucleotide polymorphism (SNP) map of
the human genome has recently been unveiled (Inter-
national Human Genome Sequence Consortium 2001;
International SNP Map Working Group 2001), and
there is currently an exciting period of development of
efficient statistical methods needed to meet the chal-
lenges posed by LD mapping with this type of data.

The simplest approaches, based on analysis of mark-
ers one at a time, are readily seen to be statistically ineffi-
cient. The likelihood methods of Terwilliger (1995),
Xiong and Guo (1997), and Collins and Morton (1998)
combine information across markers but do so via an
assumption of independence. This assumption is inva-
lid, since alleles at closely linked loci are often strong-
ly correlated, and it will obviously give rise to mislead-
ing inferences (Clayton 2000; Rannala and Slatkin
2000). Recently, genuinely multipoint methods that
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model complete marker haplotypes have begun to ap-
pear. These include the methods of McPeek and Strahs
(1999), Morris et al. (2000), Rannala and Reeve (2001),
and Liu et al. (2001). Some of the principal features of
these LD-mapping methods, to be discussed further be-
low, are summarized in table 1.

The key idea underlying all LD-mapping methods is
that, in the vicinity of a disease locus, a sample of case
chromosomes will tend to have more-recent shared an-
cestry than do control chromosomes, because many of
them may share a recent disease mutation. Consequently,
a sample of case chromosomes is expected to display
excess sharing of marker alleles over control chromo-
somes, the excess decaying with distance from the disease
locus. However, this simple situation is often complicated
by multiple disease mutations, sporadics among the sam-
ple of case chromosomes, mutations at marker loci, and
allele sharing due to population substructure or founder
effects. The challenge for LD mapping is to efficiently
detect excess allele sharing due to shared inheritance of
a common disease mutation and to distinguish it from
background patterns of variation. This in turn requires
effective modeling of the mechanisms generating allele
sharing and the resulting LD.

Figure 1 illustrates the complex allele-sharing structure
that may arise in the chromosome region flanking a dis-
ease locus, even in a simplified setting that ignores the
complicating factors listed above. In this figure, a possible
genealogical tree for the disease locus, x, is presented for
a sample of eight chromosomes, represented by the ver-



Table 1

Summary of Model Assumptions for Various Existing Methods of Fine-Scale Mapping via Population-Based Disease-Marker Association

Method Structure of Tree Likelihood
Estimation
Procedure

Ancestral
Marker Haplotype Marker Mutation k

Terwilliger (1995) Star shaped Composite over each marker Integrated maximum
likelihood

Integrate over complete
distribution

Assumed to be 0 Assumed to be
1 cM p 1 Mb

Xiong and Guo (1997) Star shaped Composite over each marker Maximum likelihood Assumed to be known Assumed to be 0 Assumed to be 1
cM p 1 Mb

Collins and Morton (1998) Star shaped Composite over each marker Maximum likelihood Assumed to be known
(preanalysis)

Estimated in Malecot
model

Estimated in Male-
cot model

McPeek and Strahs (1999) Star shaped, corrected for pair-
wise correlation

Complete marker haplotype Maximum likelihood Integrate over “restricted”
distribution

Assumed to be known Assumed to be 1
cM p 1 Mb

Morris et al. (2000) Star shaped, corrected for pair-
wise correlation

Complete marker haplotype Bayesian Integrate over complete
distribution

Assumed to be known Variable across
region

Rannala and Reeve (2001) Bifurcating genealogy Complete marker haplotype Bayesian Integrate over complete
distribution

Assumed to be known Assumed to be 1
cM p 1 Mb

Liu et al. (2001) Star shaped, corrected for pair-
wise correlation

Complete marker haplotype Bayesian Integrate over complete
distribution

Assumed to be known Assumed to be 1
cM p 1 Mb

Shattered coalescent Shattered bifurcating genealogy Complete marker haplotype Bayesian Integrate over complete
distribution

Assumed to be known Assumed to be k

cM p 1 Mb
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Figure 1 Genealogical tree representing shared ancestry, at locus
x, of a sample of eight chromosomes, C1–C8. The descent of the
founder chromosome segment, indicated by the blackened regions, is
disrupted by historical recombination events. Since mutation events
are rare, an observed chromosome will usually bear the same allele
as the founder, at any marker locus within the preserved region.

tical bars C1–C8; the horizontal bars correspond to an-
cestral chromosomes, which are not generally observed.
The dark shading in both the horizontal and the vertical
bars indicates chromosome segments inherited, identical
by descent (IBD), from the ancestral chromosome at the
root of the tree (fig. 1, top), the most recent common
ancestor (MRCA) of the sample at locus x. Since mu-
tations are rare, an observed chromosome will usually
bear the same allele as does the MRCA, at any marker
locus within the preserved (i.e., shaded) region. Notice
that a boundary of the preserved region is often the same
for closely related chromosomes, such as C1 and C2.
This is because the common boundary is due to the same
historical recombination event. Such chromosome pairs
will also tend to share any marker mutations arising since
the MRCA. Thus, closely related chromosomes may also
share with each other, in the vicinity of x, a chromosome
segment larger than that shared with the MRCA.

Unfortunately, the genealogical tree underlying a
sample of chromosomes at a given locus is usually
unknown, and its structure must be either assumed or

inferred. Many existing methods for LD mapping (Ter-
williger 1995; Xiong and Guo 1997; Collins and Mor-
ton 1998) assume a “star-shaped” tree, in which case
chromosomes have descended independently from
their MRCA. By ignoring the pattern of shared an-
cestry among case chromosomes, the star-genealogy
assumption leads to overoptimism. For example, a
shared recombination or marker-mutation event in the
genealogical history of two or more case chromosomes
may be interpreted as distinct events, with their in-
formation multiply counted. As a result, the variance
of parameter estimates, including the location of the
disease locus, tends to be understated and may yield
misleading inferences.

The inadequacy of the star-genealogy assumption
has been recognized by McPeek and Strahs (1999).
They make allowance for the correlation, in allele shar-
ing, between case chromosomes in a quasi-likelihood
framework (Wedderburn 1974; McCullagh and Nel-
der 1989). Their quasi–log likelihood is of the same
functional form as that under a star genealogy but is
multiplied by a correction factor, dependent only on the
sample frequency of case chromosomes. A weakness of
this approach, also employed by Morris et al. (2000),
is that the correlation is the same for each pair of case
chromosomes, regardless of the available marker
information.

Lam et al. (2000) construct a genealogical tree for
chromosomes bearing a common mutation at the dis-
ease locus, using a combination of parsimony and like-
lihood methods. They then proceed as if the tree is
known with certainty and is the same for all putative
locations for the disease locus. Graham and Thompson
(1998) integrate over trees consistent with the case chro-
mosomes, generated under a Moran (1962) model with
known demographic parameters, but their method is
currently restricted to interval mapping with pairs of
marker loci. Rannala and Reeve (2001) use Markov-
chain Monte Carlo (MCMC) methods in a Bayesian
framework, to integrate over genealogical trees gener-
ated under an intra-allelic coalescent model (Slatkin and
Rannala 1997).

Here, we present a Bayesian multipoint method for
fine-scale LD mapping, a method that also employs
MCMC technology and coalescent theory to average
over possible genealogies underlying the sample of case
chromosomes. However, there are a number of key dis-
tinctions between our new method and that of Rannala
and Reeve (2001). Perhaps the major advantage of our
method is that we introduce a shattered-coalescent
model for genealogies, allowing both for (a) multiple
founding disease mutations at the same locus, and (b)
sporadic cases of disease, caused by environmental fac-
tors or mutations at other loci. Liu et al. (2001) also
allow for multiple mutations, at the same locus, in a
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Bayesian MCMC framework. However, they assume
that each cluster of case chromosomes bearing the same
disease mutation descends from the founder for that
mutation, under a star genealogy. An additional advan-
tage over the method of Rannala and Reeve (2001) is
that we allow for background LD between marker loci.
We follow Liu et al. (2001) by modeling control
marker–haplotype frequencies via a first-order Markov
process.

In contrast to Rannala and Reeve (2001), we choose
not to incorporate prior information about candidate
genes, available from an annotated human genome se-
quence and from disease-mutation databases. We prefer
to investigate only the information contained in the
marker haplotypes of the sample of case and control
chromosomes. Other sources of information may be in-
corporated later, when the results of our analysis are
interpreted. It is a feature of the Bayesian paradigm for
statistical inference that the order in which independent
sources of data are processed does not affect final
inferences.

In addition to their approaches to modeling the ge-
nealogy underlying a sample of case chromosomes, an-
other key feature differentiating methods for multipoint
LD mapping is their treatment of the founding marker
haplotype (table 1). Xiong and Guo (1997) assume this
information to be known. Collins and Morton (1998)
estimate the most likely ancestral allele at each marker
locus but then treat the resulting haplotype as if it is,
with certainty, known to be the founder. Clayton (2000)
recognizes that it is more appropriate to treat the found-
ing haplotype as missing data and to integrate over a
suitable probability distribution in likelihood calcula-
tions. In the composite-likelihood framework, Terwil-
liger (1995) integrates over all possible alleles at each
marker locus. However, this approach is likely to be
computationally demanding for genuinely multipoint
methods. McPeek and Strahs (1999) overcome this
problem by considering only a restricted set of marker
haplotypes, deemed most likely to be the founder, using
a branch-and-bound algorithm. Here, we follow Morris
et al. (2000), Liu et al. (2001), and Rannala and Reeve
(2001), by integrating approximately over ancestral
marker haplotypes in an MCMC framework.

We have conducted a detailed simulation study to
compare our method with rival approaches. We present
results that provide evidence of improvements made by
our new method, in terms of mean square error and the
coverage of credibility intervals for the location of the
disease locus. In addition, inferences about location are
shown to remain robust to modeling assumptions.

Methods

We consider a candidate region that is assumed to in-
clude a unique disease-susceptibility locus at unknown

location x. The region is spanned by marker loci, with
unknown background population-haplotype propor-
tions denoted “ .” A sample of unrelated affectedh nA

case chromosomes and unrelated unaffected controlnU

chromosomes are typed at the marker loci, to obtain sets
of haplotypes and , respectively. A summary of no-A U
tation is presented, for reference, in Appendix A.

Our goal is to approximate , the posteriorP (xFA,U)
probability density function of x, given the marker
haplotype data. The elements of are nuisance param-h
eters, not of primary interest but necessary to evaluate

. Thus, we first consider the joint posteriorP (xFA,U)
density of x and , which, by Bayes’s theorem, can beh
written as

( ) ( ) ( )P x,hFA,U ∝ L A,UFx,h p x,h . (1)

For convenience, we use “P” to denote posterior den-
sities of parameters, given data; “L”to denote likeli-
hoods of data, given parameters; and “p” to denote
unconditional prior densities.

Below, we assume a uniform prior for x, although it
is straightforward to employ an informative prior as do
Rannala and Reeve (2001). We also assume (a) that the
haplotype proportions across the marker loci are jointly
uniform a priori, subject to the constraint that they sum
to one, and (b) that is independent of x. Therefore,h

is constant and can be omitted from posteriorp (x,h)
probability density function (1).

The marginal posterior density for x can be recovered
from posterior probability density function (1) by in-
tegration over haplotype proportions, ,h

( ) ( )P xFA,U p P x,hFA,U dh . (2)�
h

This integration can be approximated by MCMC meth-
ods by sampling from the distribution of P (x,hFA,U)
and simply ignoring the values of .h

Clearly, the likelihood, L , arising in poste-(A,UFx,h)
rior probability density function (1), cannot be calcu-
lated directly but, instead, requires the introduction of
additional parameters, , describing the mechanismsM
generating the observed sample of marker haplotypes
from the founding disease mutation event(s), including
the genealogical tree underlying the sample of case chro-
mosomes at x. The joint posterior probability density
function can then be written

( ) ( ) ( )P x,h,MFA,U ∝ L A,UFx,h,M p M , (3)

in which we have assumed prior independence of ,M
, and x. The marginal posterior distribution for x—orh

for any of the other model parameters—can be obtained
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Figure 2 Parameterization of the genealogical tree in terms of
the waiting times, wk, between coalescent events, during which the
tree has exactly k distinct lineages. The length of a branch is given by
the sum of waiting times between the offspring node and parental
node; for example, the length of the branch above node 1 is given by

, and the length of the branch above node 2 is given byt p w � w1 8 7

.t p w � w � w2 5 4 3

by integrations or summations analogous to posterior
probability density function (2).

The Shattered Coalescent Model for Genealogical
Trees

We assume initially that the sample of case chromo-
somes shares a recent common ancestor bearing a disease
mutation at locus x. The descent of the sample from this
common ancestor is then represented by means of a bi-
furcating genealogical tree with topology (branching
pattern) and branch lengths (fig. 2). The most suc-T U

cessful class of prior probability models for is given{U,T}
by the coalescent process (Kingman 1982; Hudson 1991;
Donnelly and Tavaré 1995; Nordborg 2001). Under this
model, each topology is equally likely, with the leafT
nodes regarded as labeled to avoid combinatorial com-
plications. Time is scaled to be measured in units of N
generations, where N is the effective population size of
chromosomes. Under the standard-coalescent model, the
scaled time, , during which the tree has exactly k dis-wk

tinct lineages, has an exponential distribution with rate
parameter , independently for each k.l p [k(k � 1)]/2k

These coalescence times then determine the branch
lengths, , of the genealogical tree, as illustrated by fig-U

ure 2.
The standard-coalescent model can be derived under

the assumption that the leaves of the tree correspond to
a random sample of chromosomes ascertained from a
large random-mating population of constant size N, not
subject to selection at the disease locus x. However, these
assumptions are unlikely to hold, even approximately,
for the sample of case chromosomes. One problem is
the ascertainment process: for population-based asso-
ciation studies, the sample is enriched for case chro-
mosomes because the disease is often rare and too few
affecteds would be included in a random sample of a
population. This affects the time scale of genealogical
trees, which can be accommodated by absorption into
N, but it also affects the shape of the tree (Slatkin 1996;
Wiuf and Donnelly 1999). Nevertheless, the standard-
coalescent process incorporates the principal effects of
shared ancestry, providing a relatively weak prior-prob-
ability model that is readily “overwhelmed” by the data.

Rannala and Reeve (2001) propose, instead, the use
of the intra-allelic coalescent process (Slatkin and Ran-
nala 1997) as an “appropriate” prior model for the dis-
tribution of genealogical trees underlying the sample of
case chromosomes. However, their model requires spec-
ification of the age of the disease mutation, which is
unlikely to be known. Further concerns as to the suit-
ability of this model, particularly for mutations with low
relative population frequency, are raised by Wiuf and
Donnelly (1999). Perhaps a more important limitation
of the intra-allelic coalescent model is the assumption
that all case chromosomes descend from the same found-

ing mutation event, represented by a single genealogy.
Even for Mendelian disorders, sporadic cases of disease
are commonly observed, and singleton founding-muta-
tion events are the exception and not the rule (Pennisi
1998).

To overcome this problem, we generalize the coales-
cent process to allow branches of the genealogical tree
to be removed—hence the term “shattered” coalescent
model—by introducing a vector of indicator variables,
, defined asz

1 if node b has a parental node
in the shattered genealogical tree

z p ,b 0 if node b has no parental node{
in the shattered genealogical tree

over all leaf nodes and internal nodes of the tree. A
realization of this process is illustrated in figure 3. Sin-
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Figure 3 Realization of the shattered coalescent process from
an unshattered genealogy underlying a sample of 16 case chromo-
somes. The branches indicated by dashed lines are removed from the
unshattered genealogy by setting the indicator variable, , forz p 0b

their offspring nodes (top). The resulting shattered genealogy (bottom)
yields two unrelated subtrees, each corresponding to independent mu-
tations at the disease locus, and two sporadic case chromosomes.

gleton leaf nodes with correspond to sporadicz p 0b

case chromosomes (phenocopies) bearing the more an-
cient, normal allele at locus x. Disconnected subtrees, in
which for an internal node of the tree, correspondz p 0b

to founders for independent disease-mutation events at
locus x.

The shattered coalescent process does not explicitly
address the problems of ascertainment. However, below
we present data analyses and simulation studies to pro-
vide evidence that inferences about x are robust to these
modeling assumptions. Under this model for the prior
distribution of genealogies underlying the sample of case
chromosomes,

z 1�z( )b b( ) ( ) ( )p U,T,zFr p � l exp �l w � r 1 � r ,k k k[ ][ ]
k b

where the products are over coalescence times, k, and
nodes, b. Under this model, each node has, independently,
probability r of having a parent node in the genealogical
tree. A low value of r corresponds to a high level of genetic
heterogeneity at x among case chromosomes, with many
singleton leaves and small clusters in the genealogy.
Higher values of r often lead to a single major subtree,
with the standard-coalescent process recovered for r p

. We assume a Beta(2,1) distribution, a priori, for the1
shattering parameter, r, given by .p (r) p r

Assignment of an informative prior to N is difficult,
because the interpretation of this parameter is not clear
in the context of the ascertainment problem. Thus, we
take to be both uniform over a wide interval andp(N)
independent of the genealogical tree. Posterior proba-
bility density function (3) can then be written as

( )P x,h,U,T,z,N,rFA,U

( ) ( ) ( )∝ L A,UFx,h,U,T,z,N p U,T,zFr p r . (4)

Augmenting the Data

The likelihood arising in posteriorL (A,UFx,h,U,T,z,N)
probability density function (4) could be calculated di-
rectly but would require summation over all possible con-
figurations of marker haplotypes at internal nodes of the
genealogical tree, denoted “ .” This computationally de-I
manding summation can be avoided by treating as aug-I
mented data. In brief, within an MCMC framework, we
simulate over possible values for the augmented data, in
the same way as for the model parameters described
above, according to the appropriate posterior distribu-
tion. Missing marker information at leaf nodes can be
easily treated in the same way, by simulating over the
possible values for untyped alleles, according to the ap-
propriate posterior probability distribution.

Extending posterior probability density function (4)
further, to incorporate augmented data and missing
marker information, we obtain an expression for the
target posterior density,

( )P x,h,U,T,z,N,r,IFA,U

( ) ( ) ( )∝ L A,U,IFx,h,U,T,z,N p U,T,zFr p r . (5)

The key advantage of posterior probability density func-
tion (5) over posterior probability density function (4)
is that is readily calculated, as weL (A,U,IFx,h,U,T,z,N)
now describe.

Computing the Likelihood

Most of our attention has been focused on modeling
the genealogy of the sample of case chromosomes, at x.
The control chromosomes are also affected by their ge-
nealogical history. However, since these chromosomes
do not share a recent disease mutation, their shared an-
cestry is expected to extend much farther into the past
than that of the case chromosomes, an expectation that
is supported, below (see the “Relative Depth of Case
and Control Genealogies” subsection), by simulation.
The effects of shared ancestry among the sample of con-
trol chromosomes are thus less important, and we adopt
a more simple model. We assume that, given , the seth
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of control marker haplotypes, , is independent of theU
other data and model parameters, so that

( ) ( ) ( )L A,U,IFx,h,U,T,z,N p L UFh L A,IFx,h,U,T,z,N .

The most trivial model for L assumes no LD in the(UFh)
population of normal chromosomes, with the likelihood
contribution of each control chromosome given by the
product of population proportions, , for the constituentp
marker alleles. We consider a more realistic model for
L , also incorporating an LD parameter, , between(UFh) D

each pair of adjacent marker loci, via a first-order Mar-
kov process (Liu et al. 2001).

For the sample of case chromosomes, consider a par-
ticular node, b, of the underlying genealogy, bearing
marker haplotype . We consider two scenarios:Cb

1. Node b has no parent node in the underlying ge-
nealogy, , corresponding either to a founderz p 0b

for a disease mutation at x (i.e., internal node) or
to a sporadic case (i.e., leaf node). Founding mu-
tation events and sporadic cases are assumed to
occur on random chromosomes from the popula-
tion and thus can be modeled in the same way as
control marker haplotypes.

2. Node b has a parent node in the underlying ge-
nealogy, indicated by . The distribution ofz p 1b

now depends on both the marker haplotype ofCb

the parental node, , and the occurrence of recom-Pb

bination and marker-mutation events along the
connecting branch, of length (scaled coalescenttb

time units).

Recombination and marker-mutation events are as-
sumed to occur independently across the branches of the
tree, so that

( )L A,IFx,h,U,T,z,N p

( ) ( ) ( )� L C FP ,t ,x,h,N z � L C Fh 1 � z . (6)[ ]b b b b b b
b

Conditional on the marker haplotype of the parental
node, , the distribution of is determined by the lo-P Cb b

cation, relative to the disease locus, of the nearest recom-
bination event (NRE), on either side of x. The haplotype
between the two NREs will be preserved from the parental
node to the offspring node, unless mutation events occur
at the marker loci. The haplotype extending beyond the
preserved region, on either side of x, is assumed to have
occurred as a result of recombination with a random chro-
mosome from the population. Case chromosomes are as-
sumed to be sufficiently rare that the possibility of recom-
bination between two ancestral chromosomes bear-
ing a disease mutation at x can be neglected. Thus, in
nonpreserved regions, marker haplotypes are modeled in-
dependently according to the population allele propor-

tions and first-order LD parameters, and , in the samep D

way as control chromosomes. The problem here is that
the locations of the NREs on either side of x are unknown.
Calculation of the likelihood thus requires, as detailed in
Appendix B, summation over all intermarker intervals
that are possible locations of the NREs, according to ap-
propriate models for the processes of recombination and
marker mutation.

Recombination events are assumed to occur at a rate
per Mb, per scaled unit of coalescent time, a rateNk

that is assumed to be constant both over time and across
the candidate region. Thus, the probability of no recom-
bination in a region of y Mb along a branch of length
t is approximated by . Although recombi-exp (�Nkyt)
nation rates may vary across the candidate region, we
regard this uniform assumption as providing an appro-
priate, weak prior model for the location of recombi-
nation breakpoints, which can be easily overtaken by
the data. Mutation is assumed to occur at a rate perNm

locus, per scaled unit of coalescent time, a rate that,
again, is assumed to be constant over time and across
loci in the candidate region. Thus, the probability of no
mutation along a branch of length t at a given marker
locus is approximated by . Subsequently,exp (�Nmt)
both k and m are assumed to be known constants, ob-
tained from genetic and physical maps of the region and
from an understanding of the marker mutation process.
These rates could be incorporated as parameters to be
estimated. However, the likelihood depends only on the
products and , so that k and m cannot, in practice,Nk Nm

be estimated if N is unknown.

Metropolis Algorithm

We have developed an MCMC algorithm of the Me-
tropolis type (Metropolis et al. 1953), to approximate
posterior probability density function (5). Let “ ” de-S

note the set of unknown parameters and augmented
data, , and let “ ” denote theS p {x,p,D,U,T,z,N,r,I} D

observed marker-haplotype data, , so that theD p {A,U}
target posterior distribution can be written as P . At(SFD)
each step of the algorithm, a candidate new value is′S

proposed, and is accepted in place of , with probabilityS

. If is not accepted, then the current′ ′P (S FD) /P (SFD) S

value is retained. The posterior probabilities can beS

calculated from posterior probability density function
(5), except for a normalizing constant. However, since
this constant cancels in the ratio, it is not required; this
is one of the principal advantages of a Metropolis
algorithm.

The algorithm is run for an initial burn-in period, to
allow it to “forget” the randomly selected starting value
of . Subsequently, each state of accepted by the al-S S

gorithm represents a random draw from the target pos-
terior distribution. Although these draws will, in general,
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be correlated, the correlation can be reduced by taking
only every rth output, for some suitably large r. The
choice of proposal mechanism for the generation of ′S

from is subject to only weak restrictions to ensureS

validity of the algorithm. However, computational ef-
ficiency can be greatly affected by this choice. The mul-
tistep proposal procedure used here is summarized in
Appendix C.

Interpretation of output from the algorithm is ex-
tremely straightforward: to approximate the probability
that the unknown lies in some set , we calculate theS R

proportion of MCMC outputs that lie in . If involvesR R

only some of the parameters, then the calculated pro-
portion involves only the corresponding columns of the
MCMC output.

We have emphasized x as being the primary parameter
of interest, but our algorithm generates approximations
to many other unknowns which may be of practical use.
These include the marker-allele–population proportions
and the background LD parameters. For missing marker
information, an approximate posterior distribution for
each untyped allele can be extracted from the output.
In addition, the posterior probability that any pair of
case chromosomes shares the same disease mutation can
be approximated by the proportion of outputs in which
they appear in the same subtree of the shattered gene-
alogy. On the basis of a standard hierarchical clustering
algorithm with average linkage (Hartigan 1975), these
probabilities can be used to construct a cladogram rep-
resenting genetic heterogeneity at the disease locus, from
which clades of chromosomes bearing the same muta-
tion can be identified. Furthermore, the mean time since
the MRCA of each pair of case chromosomes within the
same clade can be estimated. With the same type of
algorithm, these times can be used to construct a con-
sensus subtree, representing a point estimate of the un-
derlying genealogy of the shared mutation at the disease
locus.

The Metropolis algorithm developed here has been
implemented in the program COLDMAP, available as
UNIX or LINUX executables. The software and accom-
panying documentation is available, on request, from
the corresponding author (A.P.M.).

Simulation Study

We present some of the results of a detailed simulation
study designed to compare the performance of our Me-
tropolis algorithm with that of existing methods, which
do not explicitly model the genealogy underlying the
sample of case chromosomes. The study allows us to
check the validity of a number of model assumptions,
including robustness to ascertainment and the effects of
relatively high rates of sporadic-case chromosomes. We
have not considered the case of multiple disease muta-

tions at the same locus. In this setting, we would expect
both our method, proposed here, and that of Liu et al.
(2001) to outperform existing methods.

To make a fair and direct comparison with our pro-
posed method, denoted “TREE,” we reformulate ver-
sions of existing methodology, in a Bayesian MCMC
framework. Our Metropolis algorithm is then adapt-
ed to estimate the target posterior distribution of the
same set of model parameters, outlined below, for each
method. The methods considered here are denoted
“COMP,” “STAR,” “PAIR,” and “LIU,” each devel-
oped under the assumption of a star genealogy. Under
this model, the topology of the tree, , is fixed, withT
all branch lengths equal to t, say. Likelihood (6) is then
replaced by

( )L A,IFx,h,z,G p

( ) ( ) ( ) ( )L IFh � L C FI,x,h,G z � L C Fh 1 � z , (7)[ ]b b b b
b

where the product is over all leaf nodes of the star ge-
nealogy, I is the marker haplotype borne by the single
internal node of the tree, and is the number ofG { Nt

generations since this founder. Full details of the like-
lihood expressions for the four methods are presented
in Appendix D.

The method COMP is based on a composite likeli-
hood, assuming the marker loci to be independent. It
can be thought of as a fully Bayesian implementation
of the method of Terwilliger (1995), allowing for mu-
tation at the marker loci. PAIR and STAR are the same
as methods presented by Morris et al. (2000), based on
a likelihood for complete marker haplotypes, except
that the recombination rate, k, is assumed to be fixed.
The method PAIR incorporates the correction factor
proposed by McPeek and Strahs (1999), accounting for
the pairwise correlation between case-marker haploty-
pes resulting from recent shared ancestry.

For each of these three methods, the star genealogy
is assumed to be unshattered, not explicitly permitting
genetic heterogeneity at the disease locus among case
chromosomes. However, these methods overcome this
problem by incorporating a heterogeneity parameter,
f, corresponding to the probability that a case chro-
mosome bears the disease mutation at x. Under this
model, in equation (7), for each case chro-z p fb

mosome b. Within the Bayesian framework, we ap-
proximate the posterior distribution of f on the basis
of the MCMC output, assuming a Beta(2,1) prior
probability distribution.

The disadvantage of this approach to dealing with ge-
netic heterogeneity is that the same probability, f, of
bearing the disease mutation is assigned to each case
chromosome, regardless of the observed marker haplo-
type. This is in contrast to the method, LIU, presented
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Table 2

Summary of Parameter Values for Simulation Study

PARAMETER SET k q

MEAN TIME TO MRCAa

(generations)

50 Cases 50 Controls

1 .01 .01 161.8 19,604.4
2 .02 .01 173.4 19,244.5
3 .01 .025 387.7 20,151.8
4 .02 .025 392.0 19,073.6

a Based on 1,000 replicates of coalescent process with recombina-
tion, for a population of 10,000 chromosomes.

by Liu et al. (2001). Although the likelihood expression
L is the same as that for STAR, the parameter(C FI,x,h,G)b

is not assumed to be fixed across case chromosomes.zb

As in the shattered coalescent model, represents a vectorz
of indicator variables, where takes the value 1 if casezb

chromosome b bears the disease mutation at the disease
locus and takes the value 0 otherwise. On the basis of
the output of the MCMC algorithm, the posterior prob-
ability P is estimated, independently for each(z p 1FA,I)b

leaf node of the star genealogy. As with our shattered
coalescent model, we assume for thep (z p 1) p rb

method LIU, given a Beta(2,1) prior probability distri-
bution for r.

We have not included comparisons with the method
of Rannala and Reeve (2001), since these authors do
not allow for genetic heterogeneity at the disease locus,
at any level, among the sample of case chromosomes.
Their method is expected to have properties similar to
those of TREE, but only for samples of case chromo-
somes that are genetically homogeneous at the disease
locus.

For the methods COMP, STAR, and PAIR, no LD is
assumed in the background population of chromo-
somes. Thus, control marker haplotypes are modeled
by the product of constituent population allele propor-
tions, . In contrast, a first-order Markov process is usedp
to model control marker haplotypes for the methods
LIU and TREE, which requires additional pairwise LD
parameters .D

Data Generation via the Ancestral Recombination
Graph

Consider a 2.25-Mb candidate region for a disease
locus, spanned by 10 equally spaced SNPs. We investi-
gate the effects that the recombination rate, k, and the
relative frequency of the disease mutation in the popu-
lation, q, have on inferences that the five methods make
about location (table 2).

For each replicate, the location of the disease locus is
generated at random from within the candidate region.
We have developed an algorithm to simulate the joint
ancestry of the 10 SNPs and the disease locus, for a
population of 10,000 chromosomes, under the standard-
coalescent process with recombination (Hudson 1983;
Griffiths and Marjoram 1996, 1997), assuming a fixed
recombination rate of k Morgans per Mb across the
candidate region. For each SNP, we select at random the
position of a single mutation event in the ancestral re-
combination graph, subject to the constraint that the
relative frequency of the mutation must lie in the interval
[0.1,0.9] in the population of 10,000 chromosomes. This
reflects the nonascertainment of rare SNPs. For the dis-
ease locus, we select at random the position of a single
mutation event in the ancestral recombination graph,
subject to the constraint that q is the relative frequency

of the mutation in the population of 10,000 chromo-
somes. We then select a sample of 50 case chromosomes
from the leaves of the ancestral recombination graph
that bear the mutation at the disease locus; similarly, a
sample of 50 control chromosomes is selected from the
leaves of the ancestral recombination graph that do not
bear the disease mutation.

For each replicate, the true location of the disease
locus is recorded, together with both the time to the
MRCA of the sample of case chromosomes and the time
to the MRCA of the sample of control chromosomes.
Approximations to the posterior distribution of location
are then obtained from the output of the Metropolis
algorithm for each of the five methods, starting from the
same random parameter configuration. For each
method, a mutation rate of per locus, per�5m p 5 # 10
generation, is assumed for analysis. The median estimate
of location is then extracted from the approximate pos-
terior distribution, together with 50% and 95% credi-
bility intervals.

Relative Depth of Case and Control Genealogies

Table 2 presents the mean time (in generations) to the
MRCAs of the sample of 50 case chromosomes and 50
control chromosomes, for 1,000 replicates of the coa-
lescent process with recombination under parameter sets
1–4. For a disease mutation with relative population
frequency , the height of the case genealogyq � 0.025
is several orders of magnitude less than that of the con-
trol genealogy. This would appear to provide support
for our choice to neglect the shared ancestry of control
chromosomes and to focus, instead, on the genealogy
underlying the sample of case chromosomes, at least for
relatively rare disease mutations.

Bias and Mean Square Error of Estimated Location

Unbiased estimates of the location of the disease locus
were obtained for all five methods, over parameter sets
1–4 (results not presented). Figure 4 presents the mean
square error associated with these estimates for the five
methods, over 1,000 replicates of the coalescent process
with recombination. For all five methods, an increase in
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Figure 4 Mean square error of estimates of the location of the disease locus for parameter sets 1–4, defined in table 2, for five methods
of fine-scale LD mapping. COMP p composite likelihood under unshattered star genealogy; STAR p multipoint likelihood under unshattered
star genealogy; PAIR p multipoint likelihood under pairwise model of correlation; LIU p multipoint likelihood under shattered star genealogy;
TREE p multipoint likelihood with explicit modeling of shattered genealogy.

the recombination rate k results in reduced mean square
error associated with estimated location. This would be
expected, since an increased frequency of recombination
events will narrow down the preserved founder marker
haplotype in the vicinity of the disease locus, increasing
the accuracy of the estimate of location. A similar re-
duction in mean square error is observed for an increase
in the relative population frequency q. This is due to the
fact that a more common disease mutation tends to have
a more ancient MRCA (table 2), providing greater op-
portunity for recombination events to occur in the de-
scent of the sample of case chromosomes.

COMP consistently has the highest mean square error.
For parameter sets 1–3, there is little difference between
the mean square errors observed for STAR, PAIR, LIU,
and TREE. For these parameter sets, the probability of
recombination within the candidate region, in the de-
scent of the sample of case chromosomes from their

MRCA, is relatively low. As a result, many of the sim-
ulated case marker haplotypes are identical, a situation
for which the star genealogy is a reasonable fit. However,
for parameter set 4, there is greater opportunity for re-
combination in the candidate region, resulting in greater
variability in simulated case marker haplotypes within
replicates. In this setting, a bifurcating genealogy is a
better fit than a star-shaped tree, and, in terms of mean
square error, there some gains for PAIR but more no-
ticeable improvements for TREE.

Coverage of Credibility Intervals for Location

Figure 5 presents, for the five methods, the coverage
of 50% and 95% credibility intervals for the location
of the disease locus, over 1,000 replicates of the coales-
cent process with recombination under parameter sets
1–4. The coverage of COMP, STAR, and LIU is too low,
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Figure 5 Coverage of 50% and 95% credibility intervals (equal tailed) associated with estimates of the location of the disease locus for
parameter sets 1–4, defined in table 2, for five methods of fine-scale LD mapping. Notation is as defined in the legend to figure 4.

at ∼40%–60% of the correct coverage probability. Since
the estimates of the location of the disease locus are
unbiased, this corresponds to credibility intervals that
are too narrow, resulting from the overconfidence in-
curred by ignoring the structure of the underlying ge-
nealogical tree. Coverage of PAIR is much better, re-
flecting the increased width of intervals attained by
modeling the pairwise correlation structure (McPeek and
Strahs 1999) between case marker haplotypes. Similar
results would be expected for LIU if the same correction
factor were to be applied. However, only TREE consis-
tently yields intervals with the correct coverage prop-
erties for location, even though the standard shattered
coalescent prior-probability model for genealogy does
not take account of ascertainment.

Effects of Sporadic Case Chromosomes

In the simulations presented above, we have assumed
that each case chromosome bears the same mutation at

the disease locus. To investigate the effects that genetic
heterogeneity has on the performance of the five meth-
ods, we have simulated 1,000 replicates of the coalescent
process with recombination under parameter set 2, re-
placing case chromosomes, at random, with sporadics
sampled from the leaves of the ancestral recombination
graph that do not bear the disease mutation.

Table 3 presents the mean square error and coverage
of the 50% credibility intervals for the location of the
disease locus, as a function of the probability of sporadic
cases of disease, for each of the five methods. As genetic
heterogeneity increases, the mean square error associ-
ated with estimates of location increases. This is ex-
pected, since fewer chromosomes in the case sample con-
tribute to the estimated location. There is evidence of
improved relative performance of LIU and TREE over
other methods, because of their explicit modeling of ge-
netic heterogeneity at the disease locus. There is also
evidence of improvements in the coverage properties of
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Table 3

Effect That Increased Frequency of Sporadics Has on Mean Square
Error and on Coverage of 50% Credibility Intervals, for Estimated
Location of Disease Locus for Parameter Set 2

PROBABILITY OF

SPORADIC CASE

MEAN SQUARE ERROR (COVERAGE

OF 50% CREDIBILITY INTERVAL)

COMP FULL PAIR LIU TREE

0 .21 (.23) .16 (.27) .16 (.44) .16 (.28) .15 (.51)
.1 .25 (.23) .17 (.29) .17 (.45) .17 (.31) .16 (.50)
.2 .28 (.24) .22 (.29) .21 (.45) .20 (.33) .19 (.50)
.3 .31 (.25) .23 (.30) .22 (.46) .21 (.34) .20 (.50)
.4 .33 (.28) .26 (.32) .26 (.46) .23 (.37) .23 (.51)

Figure 6 Single-locus odds ratios for association with CF, at 23
RFLPs in the region of the CFTR gene on chromosome 7q31 (Kerem
et al. 1989). The actual location of the DF508 mutation in the CFTR
gene indicated by the vertical line in the center.

COMP, FULL, PAIR, and LIU. This is presumably due
to the fact that shared ancestry among the case chro-
mosomes is of less relative importance as the proportion
of sporadic cases increases. However, despite these im-
provements, coverage properties are correct only for
TREE.

Example Application

To illustrate our proposed method, we consider an ap-
plication to a sample of case-control data (Kerem et al.
1989), relating to the location of the DF508 mutation
for cystic fibrosis (CF). CF is a well-understood, fully
penetrant recessive disorder. The incidence of the disease
in white populations is ∼1/2,500 live births, but it is
much less common in other populations. Preliminary
linkage analysis had suggested a 1.8-Mb candidate re-
gion for a single CF gene, on chromosome 7q31, be-
tween the MET locus and marker D7S426. More re-
cently, a 3-bp deletion, DF508, has been identified within
this region, in the CFTR gene, at 0.88 Mb from the
MET locus. It is now known that DF508 accounts for
∼66% of all chromosomal mutations in individuals with
CF, with the remainder of cases being due to many other,
rarer mutations in the same gene (Bertranpetit and Cal-
afell 1996).

Kerem et al. (1989) obtained marker haplotypes from
94 case chromosomes and 92 control chromosomes,
using 23 RFLPs in the candidate region. Of the case
chromosomes, 62 have now been confirmed as bearing
the DF508 mutation. Figure 6 presents odds ratios of
disease for each RFLP across the candidate region, for
which the strongest evidence of LD extends from 0.6
to 0.9 Mb from the MET locus.

There are two challenging aspects of this data set.
First, the DF508 locus does not lie in the center of the
region of strongest LD, and, moreover, the closest RFLP
displays a low level of LD. This may have occurred as
a result of either an ancestral recombination event or a
recent mutation at the RFLP. Second, each non-DF508
mutation is expected to occur independently, on a dif-

ferent background RFLP haplotype. Thus, the 32 case
chromosomes not bearing DF508 are not expected to
share the same founder marker haplotype, adding con-
siderable noise to the pattern of LD across the candidate
region.

In previous studies, a number of existing methods for
fine-scale mapping have been applied to the CF data,
yielding a variety of results (table 4). Terwilliger (1995)
estimated the location of DF508 as being 0.77 Mb from
the MET locus, with a 99.9% support interval of
0.69–0.87 Mb, not including the true location of the
mutation. Xiong and Guo (1997) obtained an improved
estimate of the location of DF508, at 0.80 Mb, although
this is derived from only a selected subset of the CF
data, for which any case chromosome not bearing the
DF508 mutation is excluded from the analysis. They do
not report a confidence interval for this estimate, but
inspection of their profile log likelihood excludes the
true location of the mutation, at the 99%-confidence-
interval level. Collins and Morton (1998) analyzed the
same subset, but with information on additional mark-
ers in the region of the mutation (Morral et al. 1994),
which estimated the location of DF508 as being 0.83
Mb. On the basis of the reported variance of this es-
timate, the corresponding 99% confidence interval
would not include the true location of DF508. For each
of these methods, the estimated location is consistent
with the data. However, by ignoring the shared ancestry
of the case chromosomes, they do not adequately ac-
count for uncertainty in the location estimate.

McPeek and Strahs (1999) have also analyzed the com-
plete sample of CF data for which the estimated location
of DF508 is 0.95 Mb from the MET locus. Correcting
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Table 4

Estimates of Location of DF508 Mutation for Cystic Fibrosis, from Data Reported by Kerem et al. (1989), under a Variety of
Methods for LD Mapping

Method
Estimated Location [Variability]a

(Mb) Comments

Terwilliger (1995) .77 [99.9% support interval p .69–.87] Complete sample
Xiong and Guo (1997) .80 […] DF508 subset of data
Collins and Morton (1998) .83 […] DF508 subset of data; additional marker information
McPeek and Strahs (1999) .95 [95% confidence interval p .44–1.46] Complete sample; pairwise correction
Morris et al. (2000) .80 [95% credibility interval p .61–1.07] Complete sample; pairwise correction
Liu et al. (2001) … [95% credibility interval p .82–.93] Complete sample
Shattered coalescent .86 [95% credibility interval p .65–1.04] DF508 subset of data
Shattered coalescent .85 [95% credibility interval p .65–1.00] Complete sample

a Estimates of location are expressed with reference to the MET locus as origin. The correct location of DF508 is at 0.88 Mb

the variance of the estimated location by means of their
pairwise model of correlation yields a 95% confidence
interval of 0.44–1.46 Mb, covering DF508 but including
more than half of the candidate region. Morris et al.
(2000) estimated the location of DF508 as being 0.80
Mb. When the same correction factor is used in a Bay-
esian framework, a much narrower 95% credibility in-
terval, 0.61–1.07 Mb, is obtained for the location, which
still includes the true location of DF508. A possible ex-
planation for the different results obtained by these two
methods is their treatment of the rate of recombination
across the candidate region. McPeek and Strahs (1999)
assume a fixed recombination rate of 1 cM per Mb
( ). However, Morris et al. (2000) allow recom-k p 0.01
bination to vary according to a first-order Gaussian au-
toregressive process with a mean rate of 0.5 cM per Mb
( ), consistent with published genetic and�3k p 5 # 10
physical maps of the region (Collins et al. 1996).

Finally, Liu et al. (2001) have analyzed the complete
sample of CF data, assuming a single disease-mutation
event but allowing for the possibility of sporadic cases.
On the basis of the output of their MCMC algorithm,
67 of the 94 case chromosomes were assigned to the
DF508 clade, with the remaining chromosomes being
classified as phenocopies. Increasing the number of in-
dependent disease-mutation events to two or three did
not substantially improve the fit of their model to the
data. The 95% credibility interval that they obtain for
the location of DF508 is 0.82–0.93 Mb, which includes
the true location of the mutation. Their analysis is based
on an assumed recombination rate of 1 cM per Mb
( ). A lower recombination rate, consistent withk p 0.01
this region, would be expected to increase the width of
the credibility interval.

For the analyses below, a fixed recombination rate of
0.5 cM per Mb ( ) is assumed across the�3k p 5 # 10
candidate region, along with a marker-mutation rate of

per locus, per generation. Each run of�5m p 2.5 # 10
the Metropolis algorithm commences with a 20,000-
iteration burn-in period to allow convergence from a
randomly selected initial parameter set, including a ran-

dom tree. Each iteration consists of 1,815 single-param-
eter changes to the current parameter set for the DF508
subset of CF data and of 2,743 such changes for the
complete CF sample (Appendix C). In the subsequent,
200,000-iteration sampling period, realizations of the
parameter set are recorded every 50th iteration.

Analysis of the DF508 Subset

First, we present the results of our analysis of the
DF508 subset of the CF data, initially under the as-
sumption of a standard shattered coalescent model. A
number of initial random-parameter sets were consid-
ered, each resulting in convergence to similar parameter
values (results not shown). Each run of the algorithm
takes ∼48 h on a dedicated Pentium III processor. The
acceptance rate of the algorithm is 5%–10%, which is
reasonable for traversing such a complex parameter
space.

The subset of CF data considered here consists only
of those case chromosomes bearing the DF508 mutation.
As a result, we would expect an unshattered genealogy,
with all 62 chromosomes present in a single tree, for the
DF508 mutation. Over the sampling period of a single
run of the Metropolis algorithm, the median estimate of
the shattering parameter, r, is 0.935, with a 95% cred-
ibility interval of 0.857–0.985, providing little evidence
of heterogeneity at the disease locus, as would be ex-
pected within the DF508 subset of case chromosomes.
From the subset of CF data, it is not possible to extract
chromosomes with significant posterior probability of
bearing a non-DF508 mutation.

The approximate posterior distribution of marker
haplotypes borne by the MRCA of the DF508 subset of
CF chromosomes is remarkably concentrated. Six hap-
lotypes account for 93% of the posterior probability, all
sharing a common combination of alleles across 17 of
the 23 RFLPs, 0.524–0.949 Mb from the MET locus.
The median estimate of the location of the disease locus
is at 0.864 Mb, with a 95% credibility interval of
0.654–1.040 Mb, including the true location of DF508



Morris et al.: LD Mapping via the Shattered Coalescent 699

Figure 7 Approximate posterior distribution of the location of
the disease locus for the DF508 subset and for the complete sample
of CF data. The true location of the DF508 mutation is at 0.88 Mb,
indicated by the vertical line in the center.

Table 5

Sensitivity of Estimated r, Estimated x, and Estimated Time to
MRCA of DF508 Subset of Case Chromosomes, for CF Data

GROWTH

RATE ba

MEDIAN (95% CREDIBILITY INTERVAL)b

Time to MRCA
(generations) r

x
(Mb)

0 595 (183–1,877) .935 (.857–.985) .864 (.654–1.040)
1 474 (180–1,146) .940 (.865–.987) .867 (.671–1.040)
2 424 (169–1,000) .942 (.864–.988) .862 (.669–1.050)
4 349 (146–759) .937 (.857–.985) .869 (.661–1.053)
8 299 (129–611) .942 (.863–.988) .864 (.667–1.054)
16 262 (122–485) .948 (.874–.990) .867 (.673–1.038)
32 206 (95–377) .943 (.870–.987) .871 (.684–1.061)
64 189 (92–332) .949 (.878–.991) .867 (.676–1.041)

a The standard-coalescent model corresponds to a growth rate of
.b p 0

b Obtained from a single run of the Metropolis algorithm, for each
of a range of exponential population-expansion models, parameterized
in terms of the growth rate b.

(fig. 8). The median time to the MRCA of the sample
of DF508 chromosomes is 595 generations, with a 95%
credibility interval of 183–1,877 generations. This is a
lower limit for the age of the DF508 mutation, but it is
still consistent with published estimates of 100–2,000
generations (Serre et al. 1990; Morral et al. 1994).

Sensitivity to the Choice of Prior Distribution for
Genealogy

Next, we investigate sensitivity to the choice of prior
probability model for the distribution of genealogical
trees, by application to the DF508 subset of CF data.
The standard shattered coalescent process is embedded
in a one-parameter family of exponential-population-
growth models. For a population exponentially expand-
ing at scaled rate b, the current population size is

times larger than that which existed Nt gener-exp [bt]
ations ago. The coalescence rate at scaled time t (coa-
lescent units) is then given by ,btl (t) p {[k(k � 1)]/2}ek

where there are k distinct lineages in the tree. When b

is small, genealogies are typified by short branches to
the leaves of the tree, with more-ancient branches of
greater length. Conversely, for rapidly expanding pop-
ulations, with large b, the more-ancient branches are
relatively short. In the limit, as b tends to infinity, all

internal branches vanish from the tree, corresponding to
a star genealogy. Thus, the family of shattered coalescent
models with exponential growth encompasses a wide
range of probability distributions for genealogies and,
hence, provides a good basis for investigation of the
sensitivity of inferences to prior assumptions.

Table 5 presents the median estimate and correspond-
ing 95% credibility interval for model parameters, over
a range of population-growth rates, each for a single run
of the Metropolis algorithm. The median estimate of the
time to the MRCA of the sample of DF508 chromosomes
decreases with growth rate. This agrees with what would
be expected on the basis of intuition, since, as the pop-
ulation growth rate increases, the prior distribution of
genealogies becomes more star shaped. This is evident
in the consensus tree, reflecting the posterior distribution
of genealogies for the DF508 subset of case chromo-
somes (fig. 8). Since the ratio of branch length to tree
height is greatest for a star genealogy, fewer generations
are required in order to accrue the number of recom-
bination events necessary in order to be consistent with
the observed sample of data. These results suggest that
the estimated time to the MRCA of the sample of case
chromosomes is dependent on prior assumptions about
population history and, thus, should be interpreted with
caution. However, more encouragingly, the posterior dis-
tributions of both the shattering parameter, r, and the
location of the disease locus change little over the range
of population growth rates considered here (table 5).

Analysis of the Complete CF Sample

Finally, we present the results of our analysis of the
complete sample of CF data, again under the assumption
of a standard shattered coalescent model for the prior-
probability distribution of genealogical trees. The com-
plete sample includes 32 case chromosomes known not
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Figure 8 Sensitivity of the consensus tree for the DF508 subset of case chromosomes from the CF data set to changes in the exponential-
growth-rate parameter, b, assumed for the prior probability distribution of genealogies. The standard-coalescent model corresponds to a growth
rate of .b p 0

to bear DF508 but known to bear, instead, one of a
number of less-frequent mutations in the CFTR gene. In
the shattered coalescent model for genealogies, each clus-
ter of chromosomes bearing the same disease mutation
would be expected to correspond to an independent sub-
tree for the CFTR gene.

Over the sampling period of a single run of the Me-
tropolis algorithm, the median shattering parameter, r,
is 0.829, with a 95% credibility interval of 0.746–0.892.
As expected, this represents greater evidence of genetic
heterogeneity, at the disease locus, among the sample of
case chromosomes than among the DF508 subset. Using

the estimated posterior probability of appearing in the
same subtree of the shattered genealogy for each pair of
case chromosomes, figure 9a presents a cladogram to
reflect this genetic heterogeneity. A large cluster of 69
chromosomes can be extracted, corresponding to the
DF508 subset (IDs 1–62) but also to an additional 7
non-DF508 chromosomes (IDs 63–69). These chromo-
somes share much of their marker haplotype in common
with the DF508 subset. This would suggest that the mu-
tation(s) borne by chromosomes 63–69 have occurred
on a background marker haplotype similar to that for
DF508. Further evidence of the relatedness of this group
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Figure 9 A, Cladogram representing genetic heterogeneity, at the disease locus, among the complete sample of case chromosomes from
the CF data set. B, Consensus tree representing the posterior distribution of genealogies underlying the cluster of case chromosomes, ID 1–69.
Both panels have been constructed via hierarchical clustering with average linkage, based on (A) the estimated probability of appearing in the
same subtree of the shattered genealogy for each pair of case chromosomes, ID 1–94, and (B) the mean time to the MRCA of each pair of
case chromosomes, ID 1–69, forming the DF508 cluster, from a single run of the Metropolis algorithm. Asterisks (*) indicate chromosomes
bearing the DF508 mutation.

of seven chromosomes to the DF508 subset is provided
by the consensus tree (fig. 9b), which is based on the
mean times to the MRCA of each pair of case chro-
mosomes in the cluster, over the sampling period of the
algorithm.

The approximate posterior distribution of marker
haplotypes borne by the MRCA of the cluster of 69 CF
chromosomes is also extremely concentrated. Five hap-
lotypes, sharing the same combination of 17 alleles as
are shared by the DF508 subset, account for 74% of the

posterior probability. One further haplotype, not ob-
served in the posterior distribution for the DF508 subset,
accounts for an additional 18% of the posterior prob-
ability, presumably reflecting the inclusion of non-DF508
chromosomes in this cluster. The median estimate of the
location of the disease locus is 0.851 Mb, with a 95%
credibility interval of 0.650–1.003 Mb, including the
true location of DF508, and is consistent with the results
of the analysis of the DF508 subset (fig. 7). The median
time to the MRCA of the cluster of 69 case chromosomes
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is 824 generations, with a 95% credibility interval of
246–3,257 generations; this is higher than the estimate
obtained for the DF508 subset, as would be expected,
given that this cluster includes seven additional, non-
DF508 chromosomes.

Discussion

We have proposed a new method for fine-scale LD gene
mapping using high-density marker maps. It incorpo-
rates a multipoint model for complete marker haplo-
types, conditional on the genealogy underlying a sample
of case chromosomes. Uncertainty about ancestry is ad-
dressed in a Bayesian MCMC framework, by simulating
over the distribution of ancestral marker haplotypes and
genealogical trees. The results of our simulation study
highlight the importance of explicit modeling of the
shared ancestry of the sample of case chromosomes. The
simple correction factor (i.e., PAIR) that McPeek and
Strahs (1999) have provided for the pairwise correlation
between case chromosomes reduces the mean square er-
ror associated with the location of the disease locus,
compared with that for the uncorrected star genealogy
(i.e., STAR). However, our proposed method, TREE, has
minimal mean square error and is unique in yielding
corresponding credibility intervals with the appropriate
coverage probabilities.

We have assumed a shattered coalescent model for
the prior-probability distribution of genealogical trees,
in contrast to the intra-allelic coalescent process pre-
ferred by Rannala and Reeve (2001). It is clear that
neither of these simple models can fully capture the
reality underlying the actual genealogy, which will be
further complicated by factors including selection, pop-
ulation substructure, and ascertainment. However, anal-
ysis of the CF data of Kerem et al. (1989) indicates that
the estimated location of the disease locus is insensitive
to the choice of exponential–population-growth-rate
parameter, which incorporates a wide range of proba-
bility distributions for genealogical trees. This encour-
ages optimism that our method is robust to prior as-
sumptions about genealogy.

The key advantage of the shattered coalescent model
over the intra-allelic coalescent process is that it explicit-
ly allows for genetic heterogeneity at the disease locus
among the sample of case chromosomes. Multiple mu-
tations and sporadic cases of disease are expected to oc-
cur for the majority of complex disorders (Pennisi 1998),
so it is vital to allow for heterogeneity to be of practical
use in gene mapping. Application of our method to the

CF data of Kerem et al. (1989) demonstrates the impor-
tance of modeling multiple mutations at the disease locus.
One major cluster of chromosomes sharing a common
mutation is identified in the MCMC output, with many
other singletons or small clusters, which are likely to
correspond to independent mutations in the CFTR gene.
Within the major cluster, a group of seven non-DF508
chromosomes are identified that share, with the DF508
subset, a common marker haplotype in the CFTR gene.
A similar group of non-DF508 chromosomes has been
identified by Liu et al. (2001) in their analysis of the same
sample of data. The marker haplotype shared by the two
groups of chromosomes does not occur with high fre-
quency in the population. The mechanism generating the
clustering of this group of chromosomes and the DF508
subset—clusters that, a priori, had been thought to be
unrelated—warrants further investigation.

The importance of explicitly modeling genetic het-
erogeneity is demonstrated by the results of our simu-
lation study. We have simulated high rates of sporadic
cases of disease, for which TREE (i.e., the shattered
coalescent) and LIU (i.e., the shattered star genealogy)
have lower mean square error associated with the es-
timated location of the mutation, although only TREE
has the correct coverage properties for the correspond-
ing credibility intervals. We would expect these two
methods to further outperform existing methods for
populations in which there are two or more distinct
clusters of case chromosomes, each corresponding to an
independent disease-mutation event at the same locus,
on distinct background founder marker haplotypes.

Explicit modeling of the genealogy underlying a sam-
ple of case chromosomes by means of the shattered co-
alescent process represents a step forward from existing
methodology. However, there is still much progress to
be made. The Bayesian modeling framework is ex-
tremely flexible: our algorithm is currently being ex-
tended to allow for phase-unknown genotype data, for
instance. More complicated is the issue of multiple mu-
tations at different sites within the same gene, which
requires modeling the history of the entire region by
means of ancestral recombination graphs (Griffiths and
Marjoram 1996, 1997); this poses a significant com-
putational challenge and remains an exciting area for
future research.
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Appendix A

Glossary of Notation

Parameter Description

x Location of disease locus
h Background population marker-haplotype proportions
p Background population marker-allele proportions
D First-order LD parameters
nA, nU Sample frequency of case chromosomes, control chromosomes
A, U Observed marker haplotypes borne by case and control chromosomes
T Topology (branching pattern) of genealogical tree
U Branch lengths of genealogical tree
N Effective population size (time scaling parameter)
z Parental-status indicators
I Internal-node–marker haplotypes
k Recombination rate (Morgans/Mb)
m Marker mutation rate (per locus, per generation)
r Prior probability that node has a parent in shattered genealogy

Appendix B

Calculation of the Branch Likelihood L (C FP ,t ,x,h,N)b b b

Consider a node, b, from the genealogy underlying the sample of case chromosomes, bearing marker haplotype
. Conditional on the marker haplotype of the parental node, , the distribution of is determined by theC P Cb b b

location of the NRE on each side of x. Under the assumption of no interference, the NREs occur independently.
Therefore,

( ) ( ) ( )L C FP ,t ,x,h,N p L C FP ,t ,x,h,N L C FP ,t ,x,h,N , (B1)b b b bL bL b bR bR b

where is the length of the connecting branch and where the subscripts L and R are marker haplotypes to thetb

left and right of the disease locus, respectively.
Consider the distance to the NRE to the right of the susceptibility locus, denoted “ .” The location of theDbR

NRE is unknown, so that

( )L C FP ,t ,x,h,N pbR bR b

( ) ( )L C FP ,t ,h,N,D � d p D � dbR bR b bR 1 bR 1

r�1

� L C FP ,t ,h,N,D � d ,d p D � d ,d( ] ( ]� ( ) ( )bR bR b bR i i�1 bR i i�1
ip1

( ) ( )�L C FP ,t ,h,N,D 1 d p D 1 d ,bR bR b bR r bR r

where are the ordered distances from x (in Mb) of the marker loci to the right of the disease locus.d ! d ! … ! d1 2 r

Given that recombination events occur at rate per Mb, per scaled unit of coalescent time,Nk p (D 1 d ) pbR i

, andexp (�Nkt d )b i

F F( ) ( ) ( )p D � d ,d pexp �Nkt d 1 � exp �Nkt d � d .[ ] [ ]bR i j b i b j i

The marker haplotype between x and the NRE will be inherited, IBD, from the parental node to the offspring
node, unless mutation occurs. The marker haplotype extending beyond the preserved region is assumed to have
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occurred as a result of recombination with a random chromosome from the population and thus occurs indepen-
dently, according to the population proportions, , in the same way as do the control chromosomes. Thus,h

( )L C FP ,t ,h,N,D � d ,d p L C FP ,t ,N,D � d ,d L C Fh ,( ] ( ]( ) ( )bR bR b bR i i�1 b 1,i bR b bR i i�1 b i�1,r() ()

where is the offspring-node marker haplotype between loci i and j, inclusive. Given that marker-mutationCb[i,j]

events occur independently at rate per locus, per unit of coalescent time, it follows thatNm

i

L C FP ,t ,N,D � d ,d p� L C FP ,t ,N,D � d ,d ,( ] ( ]( ) ( )b[1,i] bR b bR i i�1 bj bj b bR i i�1
jp1

where

( )exp �Nmt if C p Pb bj bjL C FP ,t ,N,D � d ,d p ,( ]( )bj bj b bR i i�1 { ( )1 � exp �Nmt if C ( Pb bj bj

for each marker locus .j � i

Appendix C

Details of Metropolis Algorithm

Table C1

Weights of Possible Changes to Current Parameter Set

Change Proposal Parameter Weighta

1 Location x 1
2 Effective population size N 1
3 Population allele

proportion
p m

4 Population LD
parameter

D m � 1

5 Parental-status indicator z 2(nA � 1)
6 Ancestral haplotype I m(nA � 1)
7 Parental-node position T and U 2(nA � 1)
8 Ordering of coalescent

events
U nA � 2

9 Waiting time U nA � 1
10 Missing information u

Overall nA(6 � m) � m
� u � 6

a m p no. of diallelic marker loci; u p no. of untyped marker
alleles, across sample of case and control chromosomes.

Each iteration of the Metropolis algorithm consists of
a multistep proposal procedure. The current set of un-
known model parameters and augmented data is de-
noted “ .” At each step, a newS p {x,p,D,U,T,z,N,r,I}
parameter set, , is proposed. To ensure reversibility,′S

each proposal then consists of 1 of 10 possible changes
to the parameter space, selected at random, according
to predetermined weights (table C1). The new parame-
ter set is substituted for the current parameter set, pro-
vided that for observed marker hap-′P (S FD) /P (SFD) 1 a

lotypes , where a is a standard uniform ran-D p {A,U}
dom variable.

The possible changes to the current parameter set are
summarized below, for a map of diallelic marker loci,
with alleles coded “1” and “2” at each locus. For each
proposed change, e is a standard uniform random var-
iable, and f is a constant that controls the maximum
change in the parameter value.

Change 1: Propose a New Location for the Disease
Locus

The proposed location is given by ′x p x � f (e �
. To ensure reversibility,0.5)

′ ′2x � x if x ! x′ L Lx p ,′ ′{2x � x if x 1 xR R

where xL and xR denote the locations (in Mb) of the
extremes of the candidate region.

Change 2: Propose a New Effective Population Size

The proposed population size is given by ′N p N �
. To ensure reversibility, if the pro-′ ′f (e � 0.5) N p �N

posed population size is negative. A similar reflective
boundary can be incorporated for an upper limit to ef-
fective population size, if necessary.

Change 3: Propose a New Population Marker-Allele
Proportion

Select, at random, a marker, i, for the proposed pro-
portion change. The proposed proportion of allele 1 at
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the selected marker is given by . To′p p p � f (e � 0.5)i i

ensure reversibility,

′ ′�p if p ! 0′ i ip p .i ′ ′{2 � p if p 1 1i i

Change 4: Propose a New Population LD Parameter

Select, at random, a pair of adjacent markers, i and
, for the proposed parameter change. The proposedi � 1

parameter is given by . To en-′D p D � f (e � 0.5)i(i�1) i(i�1)

sure reversibility,

′ ′�2 � D if D ! �1′ i(i�1) i(i�1)D p .i(i�1) ′ ′{2 � D if D 1 1i(i�1) i(i�1)

Change 5: Propose a New Parental Status Indicator

Select, at random, a node, b, from the genealogical
tree. The proposed parental state for the selected node
is given by .′z p 1 � zb b

Change 6: Propose a New Allele for a Single Internal
Node Marker Haplotype

Select at random, an internal node, b, from the tree.
Select, at random, a marker, i, for the proposed change.
The proposed allele, at the selected marker is given′Ibi

by .′I p 3 � Ibi bi

Change 7: Propose a New Position for the Parental
Node of a Single Branch of the Tree

Figure C1 Proposal of a new position for the parental node,
, on a selected branch of the genealogy, indicated by the dotted linePb

(Change 6).

Figure C2 Proposed new ordering for merging events between
the most recent offspring node, O1b, and the parental node, Pb, of node
b (i.e., Change 7).

Select, at random, a node, b, from the tree. The parent
node of b is denoted “ ”; the offspring node of thePb

second branch descending from node is denoted “ ,”P Sb b

with “ ” denoting the parent node of . The currentA Pb b

configuration is illustrated in figure C1. A new position
for the parent node is chosen by selecting, at random,
a branch from the tree. Equal weight is given to each
branch, except for the following branches, which are all
assigned weight zero:

● the branch above node b;
● the branch above node ;Pb

● the branch above node ;Sb

● any branch with the parental node below ;Pb

● any branch with the offspring node above .Pb

By selecting a branch in this way, the time of the merging
event corresponding to node is preserved, with andP Ab b

replaced by and , the parent and offspring nodes′ ′S A Sb b b

of the selected branch.

Change 8: Propose a New Ordering for Merging
Events between a Pair of Internal Nodes

Select, at random, an internal node, b, from the tree,
a node corresponding to the merging event at time .tb

We denote the parental node of b as “ ,” occurring atPb

time . The two offspring nodes of b are denoted bytPb

“ ” and “ ,” with “ ” denoting the time corre-O O tb1 b2 Ob

sponding to the more ancient of these two merging
events (fig. C2). The times corresponding to the merging
events between and are denoted “t t t pO Pb b

.” To choose a new ordering for{t ,t ,t , … ,t , … ,t }O 1 2 b Pb b

the merging events, an internal node, S, is selected at
random from those corresponding to the times . Thet
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proposed ordering of waiting times is given by ′t p
, where′ ′ ′{t ,t ,t , … ,t , … ,t }O 1 2 b Pb b

t if j p Sb

t if j p bS
′t p t if t ! t and t ! t ! t .j j�1 S b S j b

t if t ! t and t ! t ! tj�1 b S b j S{
t otherwisej

Change 9: Propose a New Waiting Time between
Coalescent Events

Select an interval between adjacent coalescent events
during which the tree has k distinct lineages. The pro-
posed waiting time for the selected interval is given by

. To ensure reversibility,′ ′w p w � f (e � 0.5) w p �k k k

if the proposed waiting time is negative.wk

Change 10: Propose a New Allele for Missing Marker
Information

Select, at random, a chromosome, j, with missing
marker information. Select, at random, a marker locus,
i, from the missing information for chromosome j. The
proposed allele is given by , for missing in-′A p 3 � Aji ji

formation from a case chromosome, and by ′U p 3 �ji

, for missing information from a control chromosome.Uji

Appendix D

Models for LD under a Star Genealogy

For the likelihood, , in equation (7), weL (C Fx,G,h,I)b

consider four models, which, on the basis of existing
methods for fine-scale LD mapping, are denoted
“COMP,” “STAR,” “PAIR,” and “LIU.”

COMP corresponds to a composite likelihood for in-
dependent markers, a likelihood for which

( ) ( )L C Fx,G,h,I p � L C Fx,G,p ,I ,b bi i iCOMP
i

over all loci, i. The likelihood can beL (C Fx,G,p ,I )bi i i

calculated by noticing that for all leaf nodes andP { Ib

that in equation (B1) and by following theNt { Gb

probability arguments presented in Appendix B, under
the assumption that only one marker locus is present to
the right (or left) of the disease locus.

STAR and LIU correspond to a genuinely multipoint
likelihood for complete marker haplotypes. This like-
lihood,

( ) ( )L C Fx,G,h,I p L C Fx,G,h,I ,b bSTAR LIU

is calculated directly from the arguments presented in
Appendix B, again by noticing that for all leafP { Ib

nodes and that in equation (B1).Nt { Gb

PAIR corresponds to an approximate multipoint like-
lihood, which allows for pairwise correlation between
case chromosomes and which is given by

c( ) ( )L C Fx,G,h,I p L C Fx,G,h,I .[ ]b bPAIR STAR

The correction factor, c, depends only on the sample
frequency of case chromosomes and is as derived by
McPeek and Strahs (1999).
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